

How to Build Better Portfolios in Python Using Riskfolio-Lib

Welcome

We will begin promptly at 11 AM ET. If you are unable to hear the speakers, please let us know in the chat box. You may enter your questions in the Q&A, we will address them at the end of the presentation. You can find a copy of the recording of this webinar: www.fdpinstitute.org/webinars www.caia.org/caia-infoseries

Financial Data Professional Institute

FDP Institute provides world class training and education to financial professionals to meet the accelerating needs of digital transformation in the industry.

The FDP Institute The FDP Charter

The FDP Institute offers a self-study program that provides financial data professionals an efficient path to learn the essential aspects of financial data science.

 The FDP Study Guide is now accessible on our website at:

 https://fdpinstitute.org/Candidate
 - Study - Guide

www.FDPInstitute.org

THE GLOBAL DESIGNATION FOR FINANCE PROFESSIONALS IN A DATA-DRIVEN INDUSTRY

TOPICS COVERED INCLUDE:

- 1. Introduction to Data Science
- 2. Linear & Logistic Regression, Support Vector Machines, Regularization and Time Series
- 3. Decision Trees, Supervised Segmentation and Ensemble Methods
- 4. Classification, Clustering and Naïve Bayes
- 5. Neural Networks and Reinforcement Learning
- 6. Performance Evaluation, Back Testing and False Discoveries
- 7. Text Mining
- 8. Ethical & Privacy Issues
- 9. Fintech Applications

FDP EXAM Q4- 2023 IMPORTANT DATES:

Open Registration : June 1, 2023 FDP Exam Test Center Dates: October 9 - 22, 2023 Remote Proctor Testing Dates: October 23 & 23, 2023

How to Build Better Portfolios in Python Using Riskfolio - Lib

Dany Cajas Master of Finance & Software Engineer

Cordell Tanny , CFA, FRM, FDP Portfolio Management & Quantitative Analysis Expert

Dr. Hossein Kazemi, CFA Senior Advisor CAIA Association & FDP Institute

Riskfolio-Lib

Quantitative Strategic Asset Allocation with Python

Dany Cajas - April 2023

Sleeping Beauty - Tingo Maria - Peru

Asset managers have a wide universe of assets, asset classes and models to choose:

What is Portfolio Optimization?

Portfolio optimization is the process to select the best possible combination of asset according to a set of desired objectives and constraints using mathematical techniques.

Advantages	Disadvantages			
Diversification, reduce of idiosyncratic risk.	Risk of over-diversification, too many assets increase cost of rebalancing.			
Lead to more efficient portfolios in a risk return relationship.	More appropriate for frictionless markets and liquid assets.			
Allows to build custom portfolios designed to meet investor needs.	Complex mathematical models. Some models are hard to implement and solve.			

Riskfolio-Lib

Riskfolio-Lib is a library for portfolio optimization in Python made in Peru. It is built on top of CVXPY and closely integrated with Pandas data structures. It allows users to solve two kinds of portfolio optimization models:

Convex Portfolio Optimization	Machine Learning Portfolio Optimization		
Risk-Return Trade off	Hierarchical Risk Parity		
Risk Parity Risk Budgeting Approach	Hierarchical Equal Risk Contribution		
Risk Parity Least Squares Approach	Nested Clustered Optimization		
Worst Case Optimization			

 \square

Convex Portfolio Optimization

Worst Case Optimization

Risk-Return Trade Off

Risk Parity Least Squares

Risk Minimization	min x s.t.	$\phi_0(x)$ $Ax \ge B$ $\mu' x \ge \overline{\mu}$ $\phi_i(x) \le \overline{\phi}_i, i = 1, \dots, m$	$\min_{x} \sum_{i=1}^{N}$ s.t. $1'x$	$\left(\frac{x_i(\Sigma x)_i}{x^T \Sigma x} - b_i\right)^2$ = 1	Robust Variance Minimization	min ^x s.t.	$\max_{\Sigma \in U_{\Sigma}} x^{T} \Sigma x$ $Ax \ge b$
Return Maximization	max <i>x</i> s.t.	$\mu' x$ $Ax \ge B$	Risk Parity	Risk Budgeting	Robust Return Maximization	max ^x s.t.	$\min_{\mu \in U_{\mu}} \mu x$ $Ax \ge b$
		$\phi_i(x) \le \overline{\phi}_i, \ i = 0, \dots, m$	min _{y,t}	$\phi(y)$ $b'\ln(y) \ge c$	Robust Utility Maximization	\max_{x}	$\min_{\mu \in U_{\mu}} \mu x - \lambda \max_{\Sigma \in U_{\Sigma}} x^{T} \Sigma x$
Utility Maximization	max ^x s.t.	$\mu' x - \lambda \phi_0(x)$ $Ax \ge B$ $\phi_i(x) \le \overline{\phi}_i, \ i = 1, \dots, m$	5.t.	$b \operatorname{In}(y) \ge c$ $1'y = t$ $y, t \ge 0$ $x = \frac{y}{2}$	Robust Return/Standard	max	$ \frac{\min_{\mu \in U_{\mu}} \mu x - r_{f}}{\sqrt{T_{T_{T_{n}}}}} $
Return/Risk Maximization	max x s.t.	$\frac{\mu' x}{\phi_0(x)}$ $Ax \ge B$ $\phi_0(x) \le \overline{\phi} i = 1 \qquad m$		$x = \frac{1}{t}$	Deviation Maximization	^x s.t.	$\max_{\Sigma \in U_{\Sigma}} \sqrt{x^{T} \Sigma x}$ $Ax \ge b$

Convex Portfolio Optimization

It is the traditional approach for portfolio optimization. Using convex optimization techniques, we can create portfolios that meets investor's needs like:

- Minimize the risk of a portfolio.
- Create constraints on asset classes.
- Create tracking error constraints.
- Create long-short portfolios.
- Constraints on risk measures, among other investor's needs.

Machine Learning Portfolio Optimization

Hierarchical Risk Parity

Assets Dendrogram (Pearson & single linkage)

Hierarchical Equal Risk Contribution

Nested Clustered Optimization

More Riskfolio-Lib Features

Efficient Frontier Mean-Standard Deviation

Efficient Frontier Mean-CVaR

More Riskfolio-Lib Features

Risk Parity - Equal Risk Contribution

Risk Parity - Equal Risk Contribution per Asset Class

Portfolio Return's Histogram

Assets Cluster's Network

Planar Maximally Filtered Graph (Spearman, DBHT linkage & kamada layout)

Riskfolio-Lib Links

- Source code is available in https://github.com/dcajasn/Riskfolio-Lib
- Documentation is available in https://riskfolio-lib.readthedocs.io/
- Examples are available in <u>https://riskfolio-lib.readthedocs.io/en/latest/examples.html</u>
- Pypi page for installation is available in https://pypi.org/project/Riskfolio-Lib/
- Support this project (Donations):
 - https://github.com/sponsors/dcajasn
 - <u>https://ko-fi.com/riskfolio</u>

Riskfolio-Lib Tutorial

Riskfolio-Lib Tutorial:

Financionerioncios Orenji Riskfolio-Lib Dany Cajas

Mean Risk Optimization

1. Downloading the data:

In [1]: import numpy as np import pandas as pd import yfinance as yf

import warnings

warnings.filterwarnings("ignore")
pd.options.display.float_format = '{:.4%}'.format

Date range

start = '2016-01-01'
end = '2019-12-30'

Downloading data

data = yf.download(assets, start = start, end = end)
data = data.loc[:,('Adj Close', slice(None))]
data.columns = assets

- About advanced mathematical portfolio construction models beyond mean-variance theory under ESG context.
- How stable the most recent Machine Learning allocation optimization methods are, compare to more traditional ones ?
- How would you account for tail risk in portfolio optimization programs?
- What is your favorite feature?

- Does speaker have any experience in integrating Riskfolio-lib with another opensource data aggregation tool OpenBB?
- What is the necessary programming background to build portfolios?
- Recommended mathematics to study?
- Highlight practical differences between RIVaR, EVaR, CVaR and cases where each one where should be over the others?

Q & A

https://fdpinstitute.org/Webinars/

Register Here for the Q4- 2023 CharterInformation Session:https://bit.ly/3mlKE7x

Thank You

Contact Us:

fdpinstitute.org

Signature @FDPInstitute

