

Leveraging Large Language Models in Finance

Welcome

We will begin promptly at 11 AM ET.

If you are unable to hear the speakers, please let us know in the chat box. You may enter your questions in the Q&A, we will address them at the end of the presentation. You can find a copy of the slide deck and recording of this webinar: www.fdpinstitute.org/webinars

Financial Data Professional Institute

FDP Institute provides world class training and education to financial professionals to meet the accelerating needs of digital transformation in the industry.

Introductions

Avi Patel, CAIA, FDP Head of Marketing & Data Science, Fulton Bank

Raul Salles de Padua Founder & Principal Data Scientist, Quod Analytics

Dr. Hosse in Kazemi, CFA Senior Advisor, CAIA Association & FDP Institute

Today's Topic:

Leveraging Large Language Models (LLMs) in Finance

Leveraging Large Language Models (LLMs) in Finance

Avi Patel, FDP, CAIA

Raul Salles de Padua

Contact info & resources

Avi Pate 1:

Email: avipate 168@gmail.com

LinkedIn: https://www.linkedin.com/in/avipate1/

YouTube: https://www.youtube.com/@AviPatel68

Github: https://github.com/mktaop

Most recent research, 'Word Embeddings for Banking':

https://arxiv.org/abs/2306.01807

Raul Salles de Padua:

Email: raul.padua@iese.net

LinkedIn: https://www.linkedin.com/in/raulpadua/

YouTube: https://www.youtube.com/@sallespadua

Github: https://github.com/raul-padua

HF Spaces: https://huggingface.co/raul-padua

Most recent research, 'GPT-3 Models Are Few Shot Financial

Reasoners': https://arxiv.org/abs/2307.13617

Agenda

- 1. Build up to Large Language Models (LLMs)
- 2. LLMs use cases and lifecycle
- 3. Prompt Engineering & Configuration Parameters
- 4. MLOps in GenAl Prompt Engineered Systems

Agenda

- 1. Build up to Large Language Models (LLMs)
- 2. High-level overview in the Transformers architecture
- LLMs use cases and lifecycle
- 4. Prompt Engineering & Configuration Parameters

Real world application with financial documents

Build up to LLMs- Vector Space Models

From static embeddings to contextual embeddings ...on large corpora...but fail to draw out the domain-specific relationship/semantics

Couple of results from word embeddings experimentation from my paper

Table 4: Evaluation of M	odels		
Model	Dimensions	Spearman Correlation	
Dervied Embeddings			
LSA ¹	100	0.44	
LSA	500	0.49	
LSA + Autoencoder	300	0.51	
GloVe	100	0.32	
GloVe	300	0.42	
Word2Vec	300	0.33	
LSTM	300	0.26	
Embeddings Lookup			
GloVe	300	0.41	
Word2Vec	300	0.30	
BERT	768	0.27	
ADA-002	1536	0.34	

Baseline model/benchmark

Word-1	Word-2	Model 1	Model 2	Model 3	Model 4
home	equity	1	0	0	D
credit	report	1	1	0	0
credit	card		ò	a	1
	theft		1	e e	0
identity		1	-		-
fair	credit	1 1	0	0	0
reporting	act	1	1	a	1
account	number	1	1	0	0
web	fungo	1	0	a	D
credit	score	0	1	0	0
benk	america	1		а	D
inaccurate	information	1	0	0	0
credit	bureau	1	1	a	D
collection	agency	1	0	1	0
third	party	1	1.	0	0
checking	account	0	1	1	D
please	remove	1	0	0	0
beto	payments	0	0	a	D
debt	collection	1	0	0	0
bank	account	0	0	а	1
late	payment	0	0	0	0
interest	rate	1	1	a	1
payment	history	0	1	o o	0
late	fees	0	0	g.	0
hame	loan	1	0	a	D
bank	branch	1	1	0	0
Accessment (%)		KIRK.	44%	10%	14%

Model 1 Model 2

LSA+Autoencoder BERT

Model 3 ADA Model 4 GloVe 300d (pretrained word vectors)

Build up to LLMs-RNN Architecture

For many years, language processing was done with recurrent neural networks. Predicting each token is based on the most recent word plus the hidden state of the past. Two key problems with this:

- Not parallelizable
- Not good at long range word associations since they weigh recent words more highly

Simplified LSTM Architecture

Build up to LLMs-Transformers: Attention is all you need

Encoder

Encodes inputs
("prompts") with
sequences contextual
understanding
E.g. Bert: MLM, PNS

Decoder

Takes in new tokens and generates new tokens E.g. GPT-3: Predict next token, recursive Build up to LLMs-Transformers: Attention is all you need..Learn context for each combination of words.

Build up to LLMs-Size Matters

GPT-3 by far was the largest model, in 2020

Since then, just an explosion in scaling

That's how we got to LLMs, scale and architecture. An emergent property of these LLMs is "in-context" learning, which was not expected. They can complete tasks that they were not explicitly trained on!

Allows us to skip the time and \$ required for fine-tuning. *Using the same LLM, we can perform multiple tasks.*

Agenda

- 1. Build up to Large Language Models (LLMs)
- 2. LLMs use cases and lifecycle
- 3. Prompt Engineering & Configuration Parameters
- 4. MLOps in GenAl Prompt Engineered Systems

Leverage LLMs to perform tasks using your domainknowledge

Disrupting for better, also into AI development?

There are mainly three ways to leverage adoption of LLMs' Gen AI capabilities...

Effort/ Cost Approach How to... Commercial/ Open App **Prompt** Source API calls **Engineering** Model Instruct LLM through Iow prompts to pass role and context In-Context prompts: zero to few-shot App Pre-trained Instruction-led fine-Mode1 Fine-tune d Fine-tuning tuning of pre-trained checkpoint Costly LLM with additional examples related to the task Additional Proprietary data public data App New Custom Model Create and Train a Build your Very new model from 90 Costly own scratch Public data Proprietary data

... as they are setting stones within LLMOps lifecycle

Deploy into apps Scope & Constraints Model Selection Tailor your model integration Define Choose model Prompt Deploy for application & pretrained Engineering inference Fine-tuning Build LLM Use case build your own pretrained Align with application model human feedback Monitor

Agenda

- 1. Build up to Large Language Models (LLMs)
- 2. LLMs use cases and lifecycle
- 3. Prompt Engineering & LLM's instruction led finetuning
- 4. MLOps in GenAl Prompt Engineered Systems

What is prompt engineering?

Zero-shot prompt engineering

One-shot prompt engineering

Few-shot prompt engineering

Fine-tuning a pretrained model with instruction

the LLM (1,000 + examples)

Sample prompts in instruction-led fine-tuning

Classification / Sentiment Analysis

"Given the following news article:\n{{news_article}}\npredict the associated sentiment (positive, neutral, and negative)"

Agent: Question Answering

"""You are an excellent document analyst specialized in the financial markets and industry.\
You are great at performing the task queried in the prompt in a straightforward and easy to understand manner.\

You answer the prompts always in English, translating from the document if it's not written in English language.\

If the query is out of scope from the document answer back with {{out_scope}}.\n Here is the prompted query:\n {{prompt}}"""

LLMs' finetuning process

How to bring this to life in your organization?

- Sell the art of the possible to generate use-case(s) from the business line folks
 - O Start with an use-case with lowest amount of risk to the firm, think POC
- Engage key stakeholders for buy-in, definitely:
 - Legal, Compliance, Information Security, Technology (IT), Risk Management
- Highlight the challenges that do exist, such as:
 - o Latency, Cost, Context Window, Building Complex Chains, Model & Alignment Choice

Agenda

- 1. Build up to Large Language Models (LLMs)
- 2. LLMs use cases and lifecycle
- Prompt Engineering & LLM's instruction led finetuning
- 4. High-level MLOps in GenAl Prompt Engineered Systems

"...start with the customer experience and work backwards with the technology".

Steve Jobs

... as they are setting stones within LLMOps lifecycle

Deploy into apps Scope & Constraints Model Selection Tailor your model integration Define Choose model Prompt Deploy for application & Engineering inference pretrained **Build LLM** Use case build your own Fine-tuning pretrained Align with application human feedback **Monitor** model

Prompt Engineered system example

Prompt Engineered system example

Q&A Example- Using domain-specific knowledge

Source: Sascha Heyer

Key takeaways

Unmeasurable "low hanging fruits" prompt engineering LLMs

You may fine-tune LLMs to specialize on your task, but keep in mind of the tradeoffs

Same MLOps principles apply when LLMs serve applications in production

Questions

Q&A

Please join us for our upcoming webinar:

Register Here: https://bit.ly/3YsZIVi

Additional useful resources

Original GPT-3 Paper: Language models are few-shot learners

Attention is all you need – Transformer architecture

Interpreting Pretrained Contextualized Representations via Reductions to Static Embeddings

Word-to-Vector Paper

<u>ChatGPT is not all you need. A State of the Art Review of large Generative AI models.</u>

On the Opportunities and Risks of Foundation Models

Holistic Evaluation of Language Models

Text to powerpoint, yes you can

State of the art GenAl Models- Landscape from Jan 2023

Source: https://arxiv.org/abs/2301.04655

Thank You

Contact Us:

in fo@fdpinstitute.org

linkedin.com/company/FDP Institute